Direction (Q.1-5): In each of these questions two equations numbered (I) and (II) are given. You have to solve both the equations and give answer:
a) If x > y
b) If x > y
c) If x < y
d) If x < y
e) If x = y or no relationship can't be established between x and y.
b) If x > y
c) If x < y
d) If x < y
e) If x = y or no relationship can't be established between x and y.
Solution: d
I. x² - (27-23)x-621=0
x² - 27x - 23x - 621=0
x (x-27) +23 (x-27)=0
(x-27) (x+23)=0
x=27, x= -23
II. y² - (29+27) y+783 = 0
y² - 29y - 27y + 783 =0
y (y-29) -27(y-29)=0
(y-29) (y-27) =0
y=29, y=27
Solution: a
I. 15x²- (9+25)x + 15 =0
15x² - 9x - 25x + 15 = 0
3x (5x-3)-5 (5x-3)=0
(3x-5) (5x-3)=0
II. 15y² +(10+12)y + 8 = 0
15y² + 10y + 12y + 8 = 0
5y (3y+2) +4 (3y+2)=0
(3y+2) (5y+4)=0
Solution: d
Solution: e
I. x² + (7+5)x + 35 = 0
x² + 7x + 5x + 35 =0
x (x+7) +5 (x+7)=0
(x+7) (x+5) = 0
x= -7, x=-5
II. y² + (15+3) +45=0
y² + 15y + 3y + 45=0
y (y+15)+3 (y+15)=0
(y+15) (y+3) = 0
y= -15, y=-3
Solution: e
I. 14x² - (35+6)x +15=0
14x² -35x -6x+15=056
7x (2x-5)-3 (2x-5)=0
(2x-5) (7x-3)=0
II. 56y²- (40+14)y +10=0
56y² - 40y- 14y +10=0
8y(7y-5)-2(7y-50=0
(7y-5) (8y-2) =0
0 Comments